Publications

  1. S. Mukhopadhyay, T. Thompson, J. Sakamoto, A. Huq, J. Wolfenstine, J. Allen, N. Bernstein, D. Stewart, M.  Johannes, Structure and stoichiometry in supervalent doped Li7La3Zr2O12, Chem. Mater. In press.
  2. F. Duan, L. Zhang, J. Dong, J. Sakamoto, B. Xu, X. Li, and Y. Tian, Thermoelectric properties of Sn substituted p-type Nd filled skutterudites, J. Alloys and Comp., 639, 68–73 (2015).
  3. T. Thompson, A. Sharafi, M. D. Johannes, A. Huq, J. L. Allen, J. Wolfenstine and J. Sakamoto, A Tale of Two Sites: On Defining the Carrier Concentration in Garnet-Based Ionic Conductors for Advanced Li Batteries, Adv. Energy Mater., 1500096 (2015) Cover article
  4. D. A. Lynam,  D. Shahriari, K. Wolf, P. A. Angart,  J. Koffler, M. H. Tuszynski, C. Chan, P. Walton, and J. Sakamoto, Brain derived neurotrophic factor release from layer-by-layer coated agarose nerve guidance scaffolds, Acta Biomater., 18, 128-131 (2015).
  5. I. N. David, T. R. Thompson, J. Wolfenstine, J. L. Allen, and J. Sakamoto, Microstructure and Li-ion conductivity of Hot-Pressed cubic Li7La3Zr2O12, J. Am. Ceram. Soc., 1209-1214 (2015).
  6. Y. S. Park, J. R. Salvador, and J. Sakamoto, Protective enamel coating for n- and p-type skutterudite thermoelectric materials, J. Mater. Sci., 15, 1500-1512 (2014).
  7. C. Ma, Dr. E. Rangasamy, C. Liang, J. Sakamoto, K. L. More, and M. C, “Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li+/H+ Exchange in Aqueous Solutions”, Angew. Chem. Int. Ed., 54, 129 –133 (2015).  Cover article
  8. T. Thompson, J. Wolfenstine, J.L. Allen, M. Johannes, A. Huq, I. N. David, and J. Sakamoto, “Tetragonal vs. cubic phase stability in Al–free Ta doped Li7La3Zr2O12 (LLZO), J. Mater. Chem. A., A 2 (33), 13431-13436 (2014).
  9. R. D. Schmidt, E. D. Case, Z. Lobo, T. R. Thompson, J. S. Sakamoto, X.-Y. Zhou, and Ctirad Uher, Influence of silver nanoparticle addition, porosity, and processing technique on the mechanical properties of Ba0.3Co4Sb12 skutterudites, J. Mater. Sci.  49, 20, 7192-7212 (2014).
  10. J. R. Salvador, J. Y. Cho, Z. Ye, J. E. Moczygemba, A. J. Thompson, J. W. Sharp, J. D. Koenig, R. Maloney, T. Thompson, J. Sakamoto, H. Wang, and A. A. Wereszczak, Conversion efficiency of skutterudite-based thermoelectric modules Phys. Chem. Chem. Phys., 16, 12510-12520 (2014).
  11. J. Wolfenstine, J.L. Allen, T.R. Jow, T. Thompson, J. Sakamoto, H. Jo , and H. Choe, LiCoPO4 mechanical properties evaluated by nanoindentation, Ceram. Inter., 40, 8, Part B, 13673–13677 (2014).
  12. J. L. Allen, T. Thompson, J. Sakamoto, C. R. Becker, T. Richard Jow, and J. Wolfenstine, Transport properties of LiCoPO4 and Fe-substituted LiCoPO4, J. Power Sources, 254, 204-208 (2014).
  13. D. A. Lynam, C. Peterson, R. P. Maloney, D. Shahriari, A. Garrison, S. Saleh, S. Mehrotra, C. Chan, J. Sakamoto, Augmenting protein release from layer-by-layer functionalized agarose hydrogels, Carb. Poly., 103 377– 384 (2014).
  14. W.E. Tenhaeff, E. Rangasamy, Y. Wang, A.P. Sokolov, J. Wolfenstine, J. Sakamoto, and N.J. Dudney, Resolving the grain boundary and lattice impedance of hot pressed Li7La3Zr2O12 garnet electrolytes ChemElectroChem, doi: 10.1002/celc.201300022 (2013).
  15. J. Sakamoto, E. Rangasamy, H. J. Kim, Y. S. Kim, and J. Wolfenstine, Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12, Nanotech. 24, 1-7(2013).
  16. S. Kalnaus, W. E. Tenhaeff, J. Sakamoto, A. S. Saba, C. Daniel, and N. J. Dudney, Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications, J. Power Sources, 241, 178–185 (2013).
  17. J. Wolfenstine, J. L. Allen, J. Read, and J. Sakamoto, Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature, J. Mater. Sci., 48, 5846-5851 (2013).
  18. H. Schock, G. Brereton, E. Case, J. D’Angelo, T. Hogan, M. Lyle, R. Maloney, K. Moran, J. Novak, C. Nelson, A. Panayi, T. Ruckle, J. Sakamoto, T. Shih, E. Timm, L. Zhang, and George Zhu, Prospects for Implementation of Thermoelectric Generators as Waste Heat Recovery Systems in Class 8 Truck Applications, J. Energy Resour. Technol. 135, 022001 (2013).
  19. J. Wolfenstine, H. Jo, Y-H. Cho, I. David, P. Askeland, E. D. Case, H. Kim, H. Choe, and J. Sakamoto, A preliminary investigation of fracture toughness of Li7La3Zr2O12 and its comparison to other solid Li-ion conductors, Mater. Lett., 96, 117–120 (2013).
  20. L. Zhang and J. Sakamoto, The microstructural stability and thermoelectric properties Mm0.9Fe3.5Co0.5Sb12 -based skutterudites, Mater. Chem. and Phys. 138, 601-607 (2013).
  21. E. Rangasamy, J. Wolfenstine, J. Allen, and J. Sakamoto, The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7-xLa3-xAxZr2O12 garnet-based ceramic electrolyte, J. Power Sources, 230, 261–266 (2013).
  22. M. Gao, P. Lu, B. Bednark, D. A. Lynam, J. M. Conner, J. Sakamoto, and M. Tuszynski, Templated agarose scaffolds for the support of motor axon regeneration into sites of complete spinal cord transection, Biomaterials, 34, 1529–1536 (2013).
  23. J. Sakamoto, Keeping up with the demands for electrochemical energy storage, National Academy of Engineering The Bridge, Winter, 16-24 (2012).
  24. J. R. Salvador, J. Y. Cho, Z. Ye, J. E. Moczygemba, A. J. Thompson, J. W. Sharp, J. D. Konig, R. P. Maloney, T. Thompson, J. Sakamoto, H. Whan, A. A. Wereszczak, and G. P. Meisner, Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules, J. of Elect. Mater., 7 1389-1399 (2012).
  25. R. P. Maloney, H. J. Kim, and J. Sakamoto, Lithium Titanate Aerogel for Advanced Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 4, 2318-2321 (2012).
  26. Y. –H. Cho, J. Wolfenstine, E. Rangasamy, H. –J. Kim, H. Choe, and J. Sakamoto, Mechanical properties of the solid electrolyte: Li0.33La0.57TiO3, J. Mater Sci, 47, 5970-5977(2012).
  27. J. Ni, E. Case, J. Sakamoto, E. Rangasamy, and J. Wolfenstine, Room temperature elastic moduli and Vickers hardness of hot pressed LLZO cubic garnet, J. of Mater. Sci, 47, 7978-7985 (2012).
  28. J. Wolfenstine, J. Allen, E. Rangasamy, and J. Sakamoto, Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12, J. of Mater Sci, 134, 571–575 (2012).
  29. J. Wolfenstine, J. Allen, E. Rangasamy, and J. Sakamoto, High conductivity of dense tetragonal Li7La3Zr2O12, J. Power Sources, 208, 193-196 (2012).
  30. J. Wolfenstine, J. Sakamoto, and J. Allen, Electron microscopy characterization of hot-pressed Al substituted Li7La3Zr2O12, J. Mater Sci, 47, 4428-4431(2012).
  31. J. Allen, J. Wolfenstine, E. Rangasamy, and J. Sakamoto, Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12, J. Power Sources, 206, 315-319 (2012).
  32. R. D. Schmidt, E. D. Case, J. E. Ni, J. Sakamoto, R. M. Trejo, E. Lara-Curzio, E. A. Payzant, M. J. Kirkham, and R. A. Peascoe-Meisner, The temperature dependence of thermal expansion for p-type Ce0.9Fe3.5Co0.5Sb12 and n-type Co0.95Pd0.05Te0.05Sb3 skutterudite materials, Phil. Mag, 92, 10, 1261-1286 (2012).
  33. R. D. Schmidt, E. D. Case, J. E. Ni, J. Sakamoto, R. M. Trejo, and E. Lara-Curzio, Temperature-dependent Young’s modulus, shear modulus and Poisson’s ratio of p-type Ce0.9Fe3.5Co0.5Sb12 and n-type Co0.95Pd0.05Te0.05Sb3 skutterudite thermoelectric materials, Phil. Mag, 92, 6, 727-759 (2012).
  34. L. Zhang, C. Zhou, D. Morelli, and J. Sakamoto, Scavenging Elemental Sb Through Addition of NbSb2 to Mm0.9Fe3.5Co0.5Sb12 Skutterudites, J. of Elect. Mater. , 41, 6, 1601-1605 (2012).
  35. E. Rangasamy, J. Wolfenstine, and J. Sakamoto, The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12, Solid State Ionics, 206, 28-32 (2012). Most cited article in Solid State Ionics since it was published.
  36. D. Lynam, B. Bednark, C. Peterson, D. Welker, M. Gao, and J. Sakamoto, Precision microchannel scaffolds for central and peripheral nervous system repair, J Mater Sci: Mater Med., 22, 2119-2130 (2011).
  37. X. Zhou, G. Wang, L. Zhang, H. Chi, X. Su, J. Sakamoto, and C. Uher, Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusions, J. Mater. Chem., 22, 2958-2964 (2012).
  38. S. Mehrotra, D. Lynam, C. Liu, D. Shahriari, I. Lee, M. Tuszynski, J. Sakamoto,  and C. Chan, Time Controlled Release of Arabino-furanosylcytosine (Ara-C) from Agarose Hydrogels using Layer-By-Layer Assembly: An In-vitro Study, J. Biomaterials Sci.; Polymer Edition, 23, 439-463 (2012). 
  39. R. Maloney and J. Sakamoto, Large deformation of chlorotrimethylsilane treated silica aerogels, J. Non Crystalline Solids, 357, 2059-2062 (2011).
  40. J. Sakamoto, H. Schock, T. Caillat, J. –P. Fleurial, R. Maloney, M. Lyle, T. Ruckle, E. Timm, and L. Zhang, Skutterudite-based thermoelectric technology for waste heat recovery: Progress towards a 1kW generator, Science of Adv. Mater., 3, 621-632 (2011).
  41. S. Ganguly, C. Zhou, D. Morelli, J. Sakamoto, C. Uher, and S. L.Brock, Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications,  J. of Solid State Chem., 184, 3195–3201 (2011).
  42. C. Zhou, J. Sakamoto, D. Morelli, X. Zhou, G. Wang, and C. Uher, Low-Temperature Thermoelectric Properties of Co0.9Fe0.1Sb 3-Based Skutterudite Nanocomposites with FeSb2 Nanoinclusions, J. of App. Phys., 109, 063722-063727 (2011).
  43. C. Zhou, J. Sakamoto, and D. Morelli, Low-Temperature Thermoelectric Properties of Co0.9Fe0.1Sb3 –Based Skutterudite Nanocomposites with FeSb2 Nanoinclusions, J. Elect. Mater., 40, 547-560 (2010).
  44. J. Wolfenstine, J. L Allen, J. Read, J. Sakamoto, and G. Gonalez-Doncel, Hot-pressed Li0.33La0.57TiO3, J. Power Sources, 195, Special Issue, 4124-4128 (2010). 
  45. R. D. Schmidt, J. E. Ni, E. D. Case, J. Sakamoto, D. C. Kleinow, B. L. Wing, R. C. Stewart, and E. Timm, Room temperature Young’s modulus, shear modulus, and Poisson’s ratio of Ce0.9Fe3.5Co0.5Sb12 and Co0.95Pd0.05Te0.05Sb3 skutterudite materials, J. of Alloys and Compounds, 504, 303-309 (2010).
  46. T. Gros, J. Sakamoto, A. Blesch A, L. A. Havton, and M. H. Tuszynski, Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds. Biomaterials, 31, 6719-6729 (2010).
  47. S. Mehrotra, D. Lynam, R. Maloney, K. M. Pawelec, M. Tuszynski, I. Lee, C. Chan, and J. Sakamoto, Time controlled protein release from layer-by-layer assembled multilayer functionalized agarose hydrogels, Adv. Funct. Mater, 20, 2, 247-258 (2010).
  48. J. Wolfenstine, J. L. Allen, J. Sumner, and J. Sakamoto, Electrical and mechanical properties of hot-pressed versus sintered LiTi2(PO4)3, Solid State Ionics, 180, 961-967 (2009).
  49. W. Dong, S-P. Yen, J. Paik, and J. Sakamoto, The Role of Acetic Acid and Glycerol in the Synthesis of Amorphous MgO Aerogels,  J. Amer. Ceram. Soc, 5, 1011-1016 (2009). 
  50. M. S. El Genk, H. H. Saber, T. Caillat, and J. Sakamoto, Test results and performance comparisons of coated and un-coated skutterudite based segmented unicouples, Energy Conv. and Manag., 47, 2, 174-200, (2006).
  51. S. Stokols, J. Sakamoto, D. Welker, T. Holt, J. Weiss and M. Tuszynski, Templated Agarose Scaffolds Support Linear Axonal Regeneration, Tissue Eng. 10, 2777-2778 (2006).
  52. J. Sakamoto, T. Caillat, J. –P. Fleurial, S. Jones, and J. Paik, Improving Thermoelectric Device Performance and Durability through the Integration of Advanced, Aerogel-Based Ceramics, Cer. Trans., 196, 275-290 (2006).
  53. P. E. Tang, J. S. Sakamoto, E. Baudrin, and B. Dunn, V2O5 aerogel as a versatile host for metal ions, J. of Non Crystalline Solids 350, 67-72 (2004).
  54. W. Dong, J. Sakamoto, and B. Dunn, Electrochemical Properties of Vanadium Oxide Aerogels and Aerogel Nanocomposites, J. Sol-Gel Science and Technology 26, 1-4, (2003).
  55. W. Dong, J. Sakamoto, and B. Dunn, Electrochemical Properties of Vanadium Oxide Aerogel, Sci.  Tech. Adv. Mater. 4, 1, 3-11 (2003).
  56. J. H. Harreld, J. Sakamoto, and B. Dunn, Non-hydrolytic sol-gel synthesis and electrochemical characterization of tin-based oxide aerogels, J. Power Sources 115, 19-26 (2003).
  57. Sakamoto and B. Dunn, Vanadium Oxide-Carbon Nanotube Composite Electrodes for use in Secondary Lithium Batteries, J. Electroch. Soc. 149, A26-30 (2002).
  58. Sakamoto and B. Dunn, Hierarchical battery electrodes based on inverted opal structures, J. Mater. Chem. 1, 2859-2861 (2002).
  59. J. Sakamoto, F. Wudl, and B. Dunn, Passivating Lithium Electrodes with Trimethylsilylacetylene, Solid State Ionics 144, 295-8 (2001).
  60. Y. Wang, J. Sakamoto, S. Kostov, A. N. Mansour, M. L. denBoer, S.G. Greenbaum, C. K. Huang, and S. Surampudi, Structural Aspects of Electrochemically Lithiated SnO: Nuclear Magnetic Resonance and X-ray Absorption Studies, J. Power Sources 89, 232-6 (2000).
  61. C.K. Huang, J. Sakamoto, J. Wolfenstine, and S. Surampudi, “The Limits of Low-Temperature Performance of Li-ion cells”, J. Electrochem. Soc. 147, 2893-6 (2000). 
  62. J. Wolfenstine, J. Sakamoto, and C. K. Huang, Tin Oxide-Tin Composite Anodes for use in Lithium-Ion Batteries, J. Power Sources 75, 181-2 (1998).
  63. Y. Wang, J. Sakamoto, C. K. Huang, and S. Surampudi, Lithium-7 NMR Investigation of Electrochemical Reaction of Lithium with SnO, Solid State Ionics 110, 167-72 (1998).
  64. J. Sakamoto, C.K. Huang, S. Surampudi, M. Smart, and J. Wolfenstine, The Effects of Particle Size on SnO Electrode Performance in Lithium-Ion Cells, Mater. Lett. 33, 327-329 (1998).

Book Chapters

  1. Liu, C., Pyne, R., Baek, S., Sakamoto, J., Tuszynski, M. H. and Chan, C. in Layer-by-Layer Films for Biomedical Applications, eds. Picart, C., Caruso, F., and Voegel, J.C., Wiley-VCH (2014) (in press).
  2. Jones and J. Sakamoto, Chapter 32, Aerogels Handbook, “Applications of Aerogels in Space Applications”, Springer (2011).
  3. Caillat and J. Sakamoto, Chapter 4, The New Edition of Thermoelectric Energy Conversion Systems,“High Efficiency Segmented Thermoelectric Materials and Unicouples for Power Generation Applications”, Published by Realize Science and Technology, Japan (2004).
  4. Zhou, L. Zhang, and J. Sakamoto, Chapter 9, Nanoscale Thermoelectrics, Springer, (2013).
  5. Handbook of Solid-State Batteries and Capacitors: Chapter, Superionic conducting oxide electrolytes Edited by N. J. Dudney, J. Nanda, and W. West (2014).

Bulletins

  1. MRS Bulletin /Energy Quarterly / “Solid-state batteries enter EV fray”  Volume 39 / Issue 12 / December 2014, pp 1046-1047
  2. J. Sakamoto, “Further Development of Scaffolds for Regeneration of Nerves”, NASA TechBriefs, NPO-40645 (2009).
  3. J. Sakamoto, “Expansion Compression Contacts for Thermoelectric Legs”, NASA TechBriefs, NPO-44896 (2009).
  4. J. Sakamoto, J. Paik, S. Jones, and B. Nesmith, “Hybrid Multifoil Aerogel Thermal Insulation”, NASA TechBriefs, NPO-45219 (2008).
  5. J. Sakamoto, J. Paik, and S. Jones, “Aerogel/particle composite for thermoelectric devices”, NASA TechBriefs, NPO-42031 (2008).
  6. J. Paik, S. Jones, J. Sakamoto, “Improved silica aerogel composite materials” NPO-44732 (2008).
  7. J. Sakamoto, J.-P. Fleurial, A. Kisor, T. Caillat, L. Lara, V. Ravi, and S. Firdosy, “Diffusion bonding thermoelectric devices using the molybdenum-titanium eutectoid reaction”, NPO-40883 (2007).
  8. J. Sakamoto, T. Caillat, J. -P. Fleurial, S. Jones, and J. Snyder, “Method of Suppressing Sublimation in Advanced Thermoelectric Devices and Resulting Apparatus”, NPO-40040 (2007).
  9. J. Sakamoto, T. Holt, C. Breckon, and M. Tuszynski, “Templates for fabricating nanowire/nanoconduit-based devices” NPO-41906 (2006).
  10. J. Sakamoto, J.-P. Fleurial, J. Paik, J. Snyder, S. Jones, and T. Caillat, “Aerogels for thermal insulation of thermoelectric devices” NPO-40630 (2006).
  11. J. Sakamoto, J. Paik. S.-P. Yen, and J.-P. Fleurial, “Vaporizable scaffolds for fabricating thermoelectric modules” NPO-41248 (2006).
  12. J. Sakamoto and C. K. Huang, “Mixed-Carbon Anodes for Improved Li-Ion Cells”, NASA TechBriefs, NPO-20603 (1999).
  13. C. K. Huang, S. Surampudi, J. Sakamoto, and J. Wolfenstine, “Improved Synthesis of SnO Powder for Lithium-Ion Power Cells”, NASA TechBriefs, NPO-20355 (1999).
  14. C. K. Huang and J. Sakamoto, “Rechargeable Li-Ion Cells Containing TiS2 Anodes”, NASA TechBriefs, NPO-20544 (1999).

Patents

  1. J. R. Salvador, J. Sakamoto, and Y. S. Park, Encapsulation of high temperature thermoelectric modules, Filed non-provisional Patent, General Motors, P026991 (2014).
  2. J. Sakamoto, E. Rangasamy, T. Thompson, and D. Lynam, “Template-based methods of making and using ceramic solids and products and devices related thereto”, Filed non-Provisional Patent, 3000.078US1, TEC2013-0044-01US, MSU (2014).
  3. J. Sakamoto, E. Rangasamy, H. Kim, R. Maloney, and Y. Kim, “Methods of making and using oxide ceramic solids and products and devices related thereto”, Filed non-Provisional Patent, 3000.048US1, TEC2011-0073-01US,  MSU (2012).
  4. J. Sakamoto, R. Maloney, and T. Thompson, “Ambienty Dried Aerogel for Thermal Insulation in High Temperature Applications”, Filed non-Provisional Patent, TEC2011-0048-01PCT 3000.046W01 US MSU (2011).
  5. J. Sakamoto, J.-P. Fleurial, A. Kisor, J. Weiss, M. Tuszynski, S. Stokols, C. Breckon, and T. Holt “Templating biodegradable scaffolds using multi-component polymer fibers”; 11/200,982, “High Aspect Ratio Template and Method for Producing the Same” (2005).
  6. J. Sakamoto, J.-P. Fleurial, A. Kisor, J. Weiss, M. Tuszynski, S. Stokols, C. Breckon, and T. Holt, “A novel process for fabricating nanowire/nanoconduit-based devices”, NPO-41906, May 2005, status: combined and converted to Caltech-US Patent Application; 11/200,982, “High Aspect Ratio Template and Method for Producing the Same” (2005).
  7. J. Sakamoto and M. Tuszynski, “Scaled-up nerve guidance scaffold technology for central and peripheral nerve repair”, NPO-45303, Dec 2003, status: combined and converted to Caltech-US Patent Application; 11/200,982, “High Aspect Ratio Template and Method for Producing the Same” (2005).
  8. J. Sakamoto, J.-P. Fleurial, J. Snyder, S. Jones, T. Caillat, and J. Paik, “Cast-able, aerogel-based insulation”, NPO-40630, status: Caltech-US Patent issued; 7,461,512, “System and method for suppressing sublimation using opacified aerogel” (2003). 
  9. J. Sakamoto, J.-P. Fleurial, A. Kisor, T. Caillat, L. Lara, V. Ravi, and S. Firdosy, “Diffusion bonding thermoelectric devices using the molybdenum-titanium eutectoid reaction”, NPO-40883, status: combined, converted and Caltech-US Patent issued; 7,461,512 (2004).
  10. J. Sakamoto, S. Jones and J. Paik, “A process for integrating high density aerogel into thermoelectric devices”, NPO-42031, status: combined, converted and Caltech-US Patent issued; 7,461,512 (2005).
  11. Sakamoto, T. Caillat, J. -P. Fleurial, S. Jones, and J. Snyder, “Method of Suppressing Sublimation in Advanced Thermoelectric Devices and Resulting Apparatus”, NPO-40040, status: NASA-US patent application 10/863,835 (2004).
  12. B. Li, E. Brandon, V. Ravi, T. Caillat, R. Ewell, S. Firdosy, and J. Sakamoto, “Metallization of Yb14MnSb11-based thermoelectric materials”, NPO-46670, status: Caltech-US Patent issued 61/164,325 (2004).
  13. J. Sakamoto, S. Jones, and J. Paik, “Hybrid multifoil aerogel thermal insulation”, NPO-45219, status: Caltech-US Patent Application 12/114,993 (2007).
  14. Harreld, N. Mitchell, G. Stucky, and J. Sakamoto, “Colloidal Sphere Templates and Sphere-templated Porous Materials”, University of California Regents, US patent application Issued 10/341,671 (2003).
  15. Sakamoto, C. Chan, S. Merhotra, and M. Tuszynski, Caltech/MSU-US utility patent application 2009/0202605 A1, “High Aspect Ratio Template and Method for Producing the Same” (2009).

*NPO: NASA Patent Office (NPO) invention disclosure number

Invited Talks

  1. Sakamoto, “Fast ion conducting ceramic electrolyte based on Li7La3Zr2O12 garnet”, Knowledge Foundation, Next Generation Batteries, San Diego, CA. (2015)
  2. Sakamoto, “Fast ion conducting ceramic electrolyte based on Li7La3Zr2O12 garnet”, Materials Science Department Seminar, University of Michigan, Ann Arbor, MI (2014).
  3. Sakamoto, “Keeping up with the increasing demands for electrical vehicle energy storage: Ceramic electrolytes enabling Beyond Li-ion batteries”, The Battery Show, Novi, MI (2014).
  4. Sakamoto, “Keeping up with the increasing demands for electrical vehicle energy storage: Ceramic electrolytes enabling Beyond Li-ion batteries”, Department Seminar, University of Michigan, Ann Arbor, MI (2014).
  5. Sakamoto, National Academy of Engineering, Materials for Batteries Symposium, Beckman Center, Irvine, CA (2014).
  6. Sakamoto, “Garnet-based ceramic electrolyte: Enabling Li metal anodes and solid state batteries” Conferences Internationales Materiaux et Technologies, Montecatini, Italy (2014).
  7. Sakamoto, “Garnet-based ceramic electrolyte: Enabling Li metal anodes and solid state batteries” The Minerals, Metals, and Materials Society, San Diego, CA (2014).
  8. Sakamoto, “Garnet-based ceramic electrolyte: Enabling Li metal anodes and solid state batteries”, Applied Materials, Chief Technology Office, Santa Clara, CA (2013).
  9. Sakamoto, “Garnet-based ceramic electrolyte: Enabling Li metal anodes and solid state batteries”, Beyond Li-Ion VI, University of Colorado, Boulder (2013).
  10. Sakamoto, “Garnet-based ceramic electrolyte: Enabling Li metal anodes and solid state batteries”, ITN Energy, Golden, CO (2013).
  11. Sakamoto, National Academy of Sciences, Materials for Energy Conversion, US Delegate, Kavli Frontiers of Science, Agra, India (2013).
  12. Sakamoto, Society of Automotive Engineers International 2013 World Congress, “Fast Ion Conducting Electrolyte Based on Li7La3Zr2O12 Garnet: Enabling a New Class of Electrochemical Energy Storage”, Cobo Center, Detroit, MI (2013).
  13. Sakamoto, “Multifunctional hydrogel scaffolds for nerve repair”, Rensselaer Polytechnic Institute, Troy, NY (2013).
  14. Sakamoto, “Keeping up with the increasing demands for electrochemical energy storage”, Renewable and Sustainable Energy Institute, Boulder, CO (2013).
  15. Sakamoto, “Keeping up with the increasing demands for electrochemical energy storage”, National Academy of Engineering, Frontiers of Engineering, Vehicle Electrification Symposium, Warren, MI (2012).
  16. Sakamoto, “Fast ion conducting ceramic electrolyte based on Li7La3Zr2O12 garnet”, Department Seminar, University of California, Los Angeles, MI (2012).
  17. Sakamoto, “High temperature aerogel insulation for space and terrestrial thermal-to-electric energy conversion” Glenn Research Center, Cleveland, OH (2012).
  18. Sakamoto, “Improving charge acceptance and safety through the development of highly-ordered and hierarchical electrodes for lithium ion batteries & Fast ion conducting ceramic electrolyte based Li7La3Zr2O12 garnet”, Dow Distinguished Guest Lecture Series speaker, Dow Chemical Company, Midland, MI (2012).
  19. Sakamoto, “Fast ion conducting ceramic electrolyte based on Li7La3Zr2O12 garnet”, Department Seminar, University of Michigan, Ann Arbor, MI (2012).
  20. Sakamoto, “Fast ion conducting ceramic electrolyte based on Li7La3Zr2O12 garnet”, MSU, Bioeconomy Institute speaker (2012).
  21. Sakamoto, “Fast ion conducting ceramic electrolyte based on Li7La3Zr2O12 garnet”, American Ceramic Society, Electronic Materials and Application Symposium , Orlando, FL (2012).
  22. Sakamoto, “High temperature aerogel insulation for space and terrestrial thermal-to-electric energy conversion” American Chemical Society, (2011).
  23. Sakamoto, “Skutterudite Thermoelectric Generator Technology” TMS, Quebec City, Quebec (2011).
  24. Sakamoto, “Fast ion conducting ceramic electrolyte based on Li7La3Zr2O12 garnet”, Naval Research Laboratory, Anacostia, VA (2012).
  25. Sakamoto, “Skutterudite-based Thermoelectric Generator Technology” International Conference on Thermoelectrics, Traverse City, MI (2011).
  26. Sakamoto, “Ultraporous materials for energy and biomedicine”, National Academies of Science, Frontiers of Science, Bogor, Indonesia (2011).
  27. Sakamoto, “Improving charge acceptance and safety through the development of highly-ordered and hierarchical electrodes for lithium ion batteries & Fast ion conducting ceramic electrolyte based Li7La3Zr2O12 garnet”, Ford Research Center, Dearborn, MI (2011).
  28. Sakamoto, “High temperature aerogel insulation for space and terrestrial thermal-to-electric energy conversion” American Chemical Society (2011).
  29. Sakamoto, “Ultraporous materials for energy and biomedicine”, Albion College, Albion, MI (2011).
  30. Sakamoto, Micro meso and macro porous materials for electrochemical energy storage. Corning Incorporated, Corning NY (2010).
  31. Sakamoto, Aerogel for NASA thermoelectric power generation. Michigan Space Grant Consortium, Ann Arbor, MI (2010).
  32. Sakamoto, Thermoelectric Materials and Device Technology. General Motors, Warren, MI (2010).
  33. Sakamoto, Micro meso and macro porous materials for electrochemical energy storage, Mechanical Engineering Dept. Seminar, MSU (2010).
  34. Sakamoto, Global Powertrain Conference, “Skutterudite-based Thermoelectric Generator Technology” Troy (2010).
  35. Sakamoto, Science at the Edge, MSU, “Micro meso and macro porous materials for electrochemical energy storage” East Lansing, MI (2010).
  36. Sakamoto, The Business of Plugging In, “Lithium-Ion batteries, “Battery Technology: Where Do We Go From Here?” Center for Automotive Research, Detroit MI (2009).
  37. Sakamoto, SAE World Conference, “Segmented Thermoelectrics”, Thermoelectrics Cobo Center, Detroit, MI (2009).
  38. Sakamoto, “Nanomaterials for Energy Conversion and Storage” NEXT Energy, Detroit, MI (2008).
  39. Sakamoto, “Development of aerogels for use in thermoelectric technology”, Intertech PIRA, Aerogel Conference, Boston, MA (2007).
  40. Sakamoto, “Segmented Thermoelectrics” UCLA Materials Science Dept (2007).
  41. Sakamoto, “Materials for Spinal Cord Repair”, UCLA, Brain Research Institute, Los Angeles, CA (2007).
  42. Sakamoto, “Segmented Thermoelectric Generators”, TMS Meeting, ND, South Bend, IN (2007).